# Ruthenium(II) hydrido complexes of quadridentate crown thioethers, trans- $\mathrm{RuH}(\mathrm{Cl})($ syn-L) $)\left(\mathrm{L}=\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}, \mathrm{Me}_{6}[15] \mathrm{aneS}_{4}, \mathrm{Me}_{8}[16] \mathrm{aneS}_{4}\right)$ and $\left\{\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H}) \mathrm{Cl}\left(\text { syn }-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)_{2}\right\} \mathrm{Cl}$ containing a linear $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ bond. Novel characteristics of syn-crown thioethers affecting discrimination of axial ligands and geometry of the unsupported $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ linkage 

Toshikatsu Yoshida ${ }^{\text {a }}$, Tomohiro Adachi ${ }^{\text {a }}$, Tatsuo Ueda ${ }^{\text {a }}$, Fumitaka Goto ${ }^{\text {b }}$, Katsumi Baba ${ }^{\text {a }}$, Toshihiro Tanaka ${ }^{\text {a }}$<br>${ }^{a}$ Department of Chemistry, Faculty of Integrated Arts and Sciences, University of Osaka Prefecture, Sakai, Osaka 593 (Japan)<br>${ }^{b}$ Industrial Research Divisions, Otsuka Pharmaceutical Co. Ltd., Tokusinima 777-01 (Japan)

(Received November 17, 1993; in revised form December 22, 1993)


#### Abstract

A series of ruthenium(II) hydrido complexes containing crown thioethers, trans- $\mathrm{RuH}(\mathrm{Cl})(s y n-\mathrm{L})\left(4, \mathrm{~L}=\mathrm{Me}_{4}[14] \mathrm{aneS}_{4} ; 5, \mathrm{~L}=\mathrm{Me}_{6}\right.$ [15]aneS ${ }_{4} ; 6, \mathrm{~L}=\mathrm{Me}_{8}[16]$ ane $S_{4}$ ), were prepared in good yields by treating the corresponding dichlorides cis- $\mathrm{RuCl}_{2} \mathrm{~L}$ (1, $\mathrm{L}=\mathrm{Me}_{4}[14] \mathrm{aneS}_{4} ; 2, \mathrm{~L}=\mathrm{Me}_{6}[15] \mathrm{aneS}_{4} ; 3, \mathrm{~L}=\mathrm{Me}_{8}[16] \mathrm{aneS}_{4}$ ) with $\mathrm{NaBH}_{4}$ in MeOH for 4 and in EtOH for 5 and 6 . The structures of 4 and 5 were elucidated by an X-ray diffraction study: 4, orthorhombic, space group Pna2 (No 33), $a=14.683(13)$, $b=12.605(2), c=10.284(7) \AA, Z=4, R\left(R_{w}\right)=0.030(0.033)$ for 2303 reflections $\left(\left|F_{o}\right| \geqslant 6 \sigma\left(F_{o}\right)\right) ; 5$, orthorhombic, $P b c a$ (No. 61), $a=14.976(3), b=13.877(3), c=21.079(27) \AA, Z=8, R\left(R_{w}\right)=0.043(0.051)$ for 3011 reflections $\left(\left|F_{o}\right| \geqslant 5 \sigma\left(F_{\mathrm{o}}\right)\right)$. The hydrido ligand in 4 and the chloro anion in 5 coordinate specifically at the congested axial site surrounded by the ring carbon atoms of the syn-crown thioethers. By contrast, the stereochemically different axial sites of the $\mathrm{Ru}\left(s y n-\mathrm{Me}_{8}[16]\right.$ aneS ${ }_{4}$ ) moiety in 6 failed to discriminate between the two axial ligands and 6 exists as a mixture of two geometrical isomers. A similar reaction of 1 with $\mathrm{NaBH}_{4}$ in EtOH gave an unsupported bridging hydride $\left\{\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H}) \mathrm{Cl}\left(s y n-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)_{2}\right\} \mathrm{Cl}(7)$ as the major product together with 4. Compound 7 crystallizes in the trigonal, space group, $R 3 c$ (No. 167), with $a=18.615(6), c=64.937(13) \AA, ~ Z=18$. Least-squares refinement of 1975 reflections $\left(\left|F_{o}\right| \geqslant 6 \sigma\left(F_{\mathrm{o}}\right)\right.$ ) gave a final $R\left(R_{w}\right)=0.055(0.063)$. The cation of 7 possesses crystallographically $C_{2}$ symmetry with a face to face disposition of the $\mathrm{RuH}\left(s y n-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ and $\mathrm{RuCl}\left(s y n-\mathrm{Me}_{4}[14]\right.$ ane $\mathrm{S}_{4}$ ) moieties which are connected through a $\mu$-hydride. The $\mu$-hydride is completely surrounded by the lone pair orbitals of eight $S$ atoms of the two moieties in a staggered conformation. The rotational barrier of the two moieties abuut the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ bond assessed by extended Hückel MO calculations on the model compound $\left\{\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H}) \mathrm{Cl}\left[\mathrm{syn}-\left(\mathrm{SH}_{2}\right)_{4}\right]_{2}\right\}^{+}$of $C_{4 V}$ symmetry is 0.82 eV . The calculations also indicated that the linear $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ geometry is more stable than the bent one; the elevation in total energy on bending the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ linkage by $20^{\circ}$ from linearity is 0.78 eV . Structural flexibility of $s y n-\mathrm{Me}_{4}[14]$ aneS $\mathrm{S}_{4}$ was proved from the molecular structure of 7 where a bulky chloro ligand is accommodated at the congested axial site of the $\mathbf{R u}\left(s y n-\mathrm{Me}_{4}[14]\right.$ ane $\mathrm{S}_{4}$ ) moiety. In sharp contrast to the facile displacement of all $\mathrm{PPh}_{3}$ ligands in $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ by the crown thioethers employed here to give $\mathbf{1 - 3}$, an attempt to prepare 4 by treating $\mathrm{RuHCl}\left(\mathrm{PPh}_{3}\right)_{3}$ with $\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}$ failed and $\mathrm{RuH}\left(\mathrm{Cl}_{2}\right)\left(\mathrm{PPh}_{3}\right) 2 \mathrm{Me}_{4}[14]$ aneS ${ }_{4}$ (9) was obtained. The chloride and one of two $\mathrm{PPh}_{3}$ ligands of 9 readily dissociate in MeOH affording $\operatorname{cis}-\left(\mathrm{RuH}\left(\mathrm{PPh}_{3}\right) \mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right) \mathrm{Cl}_{2}(10)$.


Key words: Ruthenium; Ruthenium(II) hydrides; Crown thioethers; Linear Ru-H-Ru bond; Extended Hückel calculations

[^0]
## 1. Introduction

In tetragonal complexes of quadridentate macrocycles, the coordination of axial ligands has been shown to be severely affected by steric encumbrance. A typical example is the so-called distal-side steric effect
upon the relative binding affinity of CO versus $\mathrm{O}_{2}$ to $\mathrm{Fe}^{1 \mathrm{II}}$ porphyrin complexes [1]. A similar steric control of CO and $\mathrm{O}_{2}$ coordinations is known for lacunar tetraazacyclohexadecatetraene complexes, Fel( $m$-xylyl)(RNEthi) $)_{2}[16]$ tetraeneN $\left.{ }_{4}\right\} \mathrm{Cl}(\mathrm{R}=\mathrm{H}, \mathrm{Me} ; \mathrm{Ethi}=$ ethylidine) and related $\mathrm{CO}^{11}$ complexes, respectively [2,3]. The difference in stereochemical congestion at the axial sites in $\left\{\mathrm{Co}\left(\mathrm{rac}-(\mathrm{N})-\mathrm{Me}_{6}[16] \text { diene } \mathrm{N}_{4}\right) \mathrm{XY}\right\}^{n+}$ ( $\mathrm{X}=\mathrm{NO}_{2}, \mathrm{Y}=\mathrm{Cl}, n=1 ; \mathrm{X}=\mathrm{H}_{2} \mathrm{O}, \mathrm{Y}=\mathrm{CH}_{3}, n=2$ ) has also been shown to affect the reactivity towards substitution of axial ligands [4]. Saturated quadridentate crown thioethers in a planar coordination can adopt several conformations, syn, anti, and so on (Fig. 1). In the syn conformer the two axial sites are in stereochemically very different environments as shown below; the site surrounded by the ring carbon atoms is congested, while the opposite site is uncongested. Therefore, two ligands possessing different steric demands are expected to be discriminated by these two axial sites on coordination. Indeed, we have recently confirmed this type of novel recognition for the two
$\pi$-acidic functionalities of PhNCO in trans- $\mathrm{Mo}\left(\eta^{2}-\mathrm{O}\right.$,

## congested side


uncongested side
$\mathrm{C}-\mathrm{PhNCO})\left(\eta^{2}-\mathrm{C}, \mathrm{N}-\mathrm{PhNCO}\right)\left(\right.$ syn-Me $\left.\mathrm{P}_{8}[16] \mathrm{aneS}_{4}\right)$ where the $\eta^{2}-\mathrm{C}, \mathrm{N}-\mathrm{PhNCO}$, more sterically demanding than $\eta^{2}-\mathrm{O}, \mathrm{C}-\mathrm{PhNCO}$, occupies the uncongested axial site stereospecifically [5]. In addition, the room to accommodate an axial ligand at the congested site may be controlled by the ring size of the macrocycles. To verify this type of recognition further for the anionic ligands, $\mathrm{H}^{-}$and $\mathrm{Cl}^{-}$, and for the ring size effect, we have prepared a series of mononuclear $\mathrm{Ru}^{\mathrm{II}}$ hydrido chloro complexes containing $14-16$ membered crown

all up (syn)

all up (syn)

up-up-down-down (anti)

up-down-down-up (anti)

up-down-up-down

up-up-up-down

up-up-down-down (anti)

up-down-down-up (anti)

up-down-up-down

up-up-up-down

up-down-up-up-

all up (syn)

up-up-down-down

up-down-up-down

up-up-up-down

Fig. 1. Conformations of $14-16$-membered quadridentate crown thioethers in planar coordination. + and - indicate the direction of the free lone pair orbitals on the $S$ atoms with respect to the equatorial $4 S$ plane.
thioethers in syn-conformation, trans-RuH(Cl)(syn-L) (4, $\mathrm{L}=\mathrm{Me}_{4}[14]$ aneS $_{4} ; 5, \mathrm{~L}=\mathrm{Me}_{6}\left[15\right.$ aneS $_{4} ; \mathbf{6}, \mathrm{L}=$ $\left.\mathrm{Me}_{8}[16] \mathrm{aneS}_{4}\right)\left(\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}=6,6,13,13-\right.$ tetramethyl-1,4,8,11-tetrathiacyclotetradecane, $\mathrm{Me}_{6}[15]$ aneS $_{4}=6$, 6,10,10,14,14-hexamethyl-1,4,8,12-tetrathiacyclopentadecane, $\mathrm{Me}_{8}[16] \mathrm{aneS}_{4}=3,3,7,7,11,11,15,15$-octamethyl-1,5,9,13-tetrathiacyclohexadecane). We also report the preparation and X-ray structure of a novel $\mu$-hydrido complex $\left\{\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H}) \mathrm{Cl}\left(\text { syn- } \mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)_{2}\right\} \mathrm{Cl}$ (7) bearing neither supporting bridging ligands nor metal-metal bonding. The X-ray structurai studies of 4 and 5 showed that the congested axial sites in the $\mathrm{Ru}\left(s y n-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ and $\mathrm{Ru}\left(s y n-\mathrm{Mc}_{6}[15] \mathrm{ancS}_{4}\right)$ fragments have the spatial volume suitable to accommodate the hydrido and chloro ligands, respectively. In contrast, the corresponding cavity of the $\mathrm{Ru}\left(s y n-\mathrm{Me}_{8^{-}}\right.$ [16]ane ${ }_{4}$ ) moiety in 6 proved to be too large to recognize these two anionic ligands. Unexpectedly from the molecular structure of 4 , the chloro ligand of the $\mathrm{RuCl}\left(\right.$ syn- $\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}$ ) fragment in 7 was confirmed to occupy the congested axial site. Therefore, we discuss the structural flexibility of $\operatorname{syn}$ - $\mathrm{Me}_{4}[14]$ ane $\mathrm{S}_{4}$ which is capable of adjusting the hole size surrounded by the ring carbon atoms depending upon the steric requirement of the anion to be accommodated.

Most $\mathbf{M}-\mathrm{H}-\mathrm{M}$ bonds of transition metals so far reported are supported by additional bridging ligands and/or distinct metal-metal bonding, whereas unsupported $\mu_{2}$-hydrido complexes are still a rarity. As far as we know, $\left[\mathrm{M}_{2}(\mu-\mathrm{H})(\mathrm{CO})_{10}\right]^{-}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ [6], [ $\left.\mathrm{W}_{2}(\mu-\mathrm{H})(\mathrm{CO})_{9} \mathrm{NO}\right][7],\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Nb}(\mu-\mathrm{H}) \mathrm{M}\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{3}(\mathrm{M}=\mathrm{Nb}, \mathrm{V})$ [8], and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{WH}(\mu$ -
$\left.\mathrm{H}) \mathrm{PtPh}\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}$[9] are the only hydrido complexes characterized so far by X-ray and neutron diffraction studies. The M-H-M three-center two-electron (3c2e) bond of transition metals is known to be inherently bent [ $6,10,11$ ]. The crystallographic $C_{2}$ symmetry of 7 and the location of the bridging hydride in the cage constructed by interlocking the eight free lone pair orbitals on sulfur atoms of the $\mathrm{RuH}\left(\right.$ syn- $\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}$ ) and $\mathrm{RuCl}\left(s y n-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ moieties, which are in a face to face disposition with a staggered conformation, should strongly support the linear $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ geometry. The $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ linkage in this rather unusual environment might be destabilized on bending since such deformation would increase the electrostatic repulsions between the free lone pair electrons of the two moieties. Therefore, the effect of these free lone pair orbitals of the sulfur atoms upon the geometry of the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru} 3 \mathrm{c}-2 \mathrm{e}$ bond in 7 was studied theoretically by extended Hückel MO calculations. Some of the preliminary aspects have been published previously [12,13].

## 2. Results and discussion

### 2.1. Preparation of ruthenium(II) hydrido complexes containing crown thioethers

The starting dichlorides cis- $\mathrm{RuCl}_{2} \mathrm{~L}\left(1, \mathrm{~L}=\mathrm{Me}_{4}{ }^{-}\right.$ [14]ane $\mathrm{S}_{4}$ [14]; 2, $\mathrm{L}=\mathrm{Me}_{6}[15]$ aneS $_{4} ; \mathbf{3}, \mathrm{L}=\mathrm{Me}_{8}[16]-$ ane $\mathrm{S}_{4}$ ) employed for the preparation of the hydrides 4-6 were obtained by heating $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ with the corresponding crown thioethers in toluene $\left(80^{\circ} \mathrm{C}\right)$ in

TABLE 1. ${ }^{1} \mathrm{H}$ NMR spectral data of cis- $\mathrm{RuCl}_{2} \mathrm{~L}(\mathbf{1 - 3})^{\text {a }}$

| L | $\mathrm{CH}_{3}$ | $\mathrm{SCH}_{2} \mathrm{CMe}_{2}$ | $\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{Me}_{4}[14] \mathrm{aneS}_{4} \\ & (1) \end{aligned}$ | 1.09 (s, 3H) | 2.41 (d, 1H); 2.67 (d, 1H) | 2.38 (m, 1H); 2.94 (m, 2H) |
|  | 1.13 (s, 3H) | $J=10.7 \quad J=15.0$ | 3.31 (m, 1H) |
|  |  | 2.97 (d, 1H); 3.52 (d, 1H) |  |
|  |  | $J=15.0 \quad J=10.7$ |  |
| $\underset{(2)}{\mathrm{Me}_{6}[15] a n e S_{4}}$ | 1.09 (s, 6H) | 2.05 (d, 1H); 2.07 (d, 1H) | 2.28 (m, 1H); 2.87 (m, 2H) |
|  | 1.16 (s, 3H) | $J=11.6 \quad J=11.9$ | 2.95 (m, 1H) |
|  | 1.19 (s, 3H) | 2.40 (d, 1H); 2.43 (d, 1H) |  |
|  | 1.24 (s, 3H) | $J=11.0 \quad J=14.0$ |  |
|  | 1.25 (s, 3H) | 2.52 (d, 1H); 2.55 (d, 1H) |  |
|  |  | $J=8.1 \quad J=8.1$ |  |
|  |  | 2.62 (d, 1H); 2.85 (d, 1H) |  |
|  |  | $J=13.8 \quad J=14.0$ |  |
|  |  | 3.21 (d, 1H); 3.37 (d, 1H) |  |
|  |  | $J=13.8 \quad J=11.6$ |  |
|  |  | 3.96 (d, 1H); 4.07 (d, 1H) |  |
|  |  | $J=11.0 \quad J=11.9$ |  |
| $\underset{(3)}{\mathrm{Me}_{8}[16] a n e S_{4}}$ | 1.17 (s, 3H) | 2.07 (d, 1H); 2.67 (d, 1H) |  |
|  | 1.21 (s, 3H) | $J=11.6 \quad J=12.8$ |  |
|  |  | 3.03 (d, 1H); 3.70 (d, 1H) |  |
|  |  | $J=12.8 \quad J=11.6$ |  |

[^1]quantitative yields. The complete substitution of all the $\mathrm{PPh}_{3}$ ligands by the 14-16 membered crown thioethers contrasts sharply with a similar reaction of [9]aneS $3_{3}$ and [12]aneS ${ }_{4}$ which afforded $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)$ ([9]aneS $\left.{ }_{3}\right)$ and $\left.\left(\mathrm{RuCl}^{\left(\mathrm{PPh}_{3}\right)}\right)\left([12] \mathrm{aneS}_{4}\right)\right)^{+}$, respectively [15]. cisStereochemistry of 1,2 and 3 was readily deducible from the IR spectra showing two $\nu(\mathrm{Ru}-\mathrm{Cl})$ bands ( 245 and 260,256 and 261 , and 258 and $270 \mathrm{~cm}^{-1}$, respectively). Consistently, the ${ }^{1} \mathrm{H}$ NMR spectra of 1 and 2 show four and twelve signals due to the $\mathrm{CH}_{2}$ protons of $\mathrm{RuSCH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{~S}$ rings, respectively (Tabie 1). Similarly, the observation of the four corresponding signals for 3 is compatible with a cis geometry. The cis geometry of $\mathrm{RuCl}_{2}\left([14] \mathrm{aneS}_{4}\right)$ has been confirmed by an X-ray structural study [16].

Treatment of 1 with an excess of $\mathrm{NaBH}_{4}$ in EtOH at ambient temperature gave trans $-\mathrm{RuH}(\mathrm{Cl})\left(\operatorname{syn}-\mathrm{Me}_{4}-\right.$ [14]ane $\mathrm{S}_{4}$ ) (4) as yellow crystals together with brown crystals of a $\mu$-hydrido complex $\left(\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H}) \mathrm{Cl}(\right.$ syn$\left.\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)_{2}$ ) $\mathrm{Cl}(7)$ in 16 and $54 \%$ yields, respec-
tively. The ratio of the two hydrides may be dependent on the solvents employed and 4 was obtained as the sole product ( $81 \%$ ) when the reaction was carried out in MeOH . A similar reaction of 2 and 3 with an equimolar amount of $\mathrm{NaBH}_{4}$ in EtOH afforded the corresponding hydrides 5 (49\%) and 6 ( $74 \%$ ), respectively. In both cases, the $\mathrm{Me}_{6}$ [15]aneS ${ }_{4}$ and $\mathrm{Me}_{8}[16]-$ aneS $_{4}$ analogues of 7 were not detected at all, indicating that the ring size of the macrocycles is crucial for the formation of the dinuclear $\mu$-hydrido complex. The ring size also affects the reactivity of the chloro ligand in 4-6 towards $\mathrm{NaBH}_{4}$. Thus, 5 and 6 react further with excess $\mathrm{NaBH}_{4}$ at room temperature to give trans-$\mathrm{RuH}\left(\eta^{1}-\mathrm{BH}_{4}\right) \mathrm{L}\left(\mathrm{L}=s y n-\mathrm{Me}_{6}[15] \mathrm{aneS}_{4}\right.$, anti-Me $\mathrm{Me}_{8}[16]-$ ane $S_{4}$ ) [17], while $\mathbf{4}$ and 7 failed to react at least under similar conditions. All the hydrido complexes thus obtained are extremely unstable in air and soluble in polar solvents. The $\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}$ complex 4 differs from the 15 - and 16 -membered analogues 5 and 6 in its solubility in aromatic hydrocarbons; the former crystals

TABLE 2. Spectral data of Ru ${ }^{\text {II }}$ hydrido complexes

|  | $\begin{aligned} & \hline \text { IR }\left(\mathrm{cm}^{-1}\right)^{\mathrm{a}} \\ & \nu(\mathrm{Ru}-\mathrm{H}) \end{aligned}$ | ${ }^{1} \mathrm{H}$ NMR ( $\delta$ ) ${ }^{\text {b }}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Ru $H$ | $\mathrm{CH}_{3}$ | SCH2 $\mathrm{CMe}_{2}$ | $\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ |
| trans-RuH(Cl) $\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}{ }^{\text {c }}$ | 1958 | -23.1 (s, 1H) | 1.12 (s, 6H) | 2.27 (d, 4H); 3.18 (d, 4H) | 2.39 (m, 4H) |
| (4) | 1908 |  | 1.24 (s, 6H) | $J=10.5 \quad J=10.5$ | 3.07 (m, 4H) |
| ${\operatorname{trans}-\mathrm{RuH}(\mathrm{Cl}) \mathrm{Me}_{6}[15] \mathrm{aneS}_{4}{ }^{\mathrm{d}}}^{(5)}$ |  | -20.9 (s, 1H) | 0.70 (s, 3H) | 1.95 (d, 2H); 2.13 (d, 4H) | 2.29 (m, 2H) |
|  |  |  | 0.83 (s, 6H) | $J=11.0 \quad J=11.0$ | 2.77 (m, 2H) |
|  |  |  | 1.03 (s, 6H) | 2.89 (d, 2H); 3.88 (d, 2H) |  |
|  |  |  | 1.21 (s, 3H) | $J=11.0 \quad J=11.0$ |  |
|  |  |  |  | 3.94 (d, 2H) |  |
|  |  |  |  | $J=11.0$ |  |
| $\text { trans-RuH(Cl)Me }{ }_{8}[16] \mathrm{aneS}_{4}{ }^{\mathrm{d}}$ <br> (6) | 1860 | -21.6 (s, 1H) | 1.08 (s, 12H) | 2.32 (d, 8H); 3.09 (d, 8H) |  |
|  | 1904 |  | 1.24 (s, 12H) | $J=11.0 \quad J=11.0$ |  |
|  |  | -21.7 (s, 1H) | 1.10 ( $\mathrm{s}, 12 \mathrm{H}$ ) | 2.27 (d, 8H); 3.18 (d, 8H) |  |
|  |  |  | 1.24 (s, 12H) | $J=11.0 \quad J=11.0$ |  |
| $\underset{(7)}{\left[\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H}) \mathrm{Cl}\left(\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)_{2}\right]^{+c, e}}$ | 1820 | -20.8 (d, 1H) | 1.03 (s, 6H) | 1.91 (d, 4H); 2.44 (d, 4H) | $\sim 2.3$ (m, 4H) |
|  |  | $J=13.9$ | 1.04 (s, 1H) | $J=9.9 \quad J=9.9$ | $\sim 2.8$ (m, 4H) |
|  |  | -33.3 (s, 1H) | 1.07 (s, 6II) | 3.09 (d, 4H); 3.78 (d, 4H) | $\sim 3.0$ (m, 4H) |
|  |  | $J=13.9$ | 1.10 (s, 6H) | $J=10.9 \quad J=10.9$ |  |
| $\left\{\mathrm{RuHMe}_{4}[14] \mathrm{aneS}_{4}\right\}^{+ \text {f }}$ | 1983 | -26.0 (s, 1H) | 1.16 (s, 6H) | 2.24 (d, 4H); 3.37 (d, 4H) | 2.69 (m, 4H) |
| (8) |  |  | 1.18 (s, 6H) | $J=10.9 \quad J=10.9$ | 3.12 (m, 4H) |
| $\underset{\text { (9) }}{\mathrm{RuH}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Me}_{4}[14] \mathrm{aneS}_{4} \cdot d m e^{\mathrm{d}, \mathrm{~g}}}$ | 2030 | $\begin{gathered} -18.8(\mathrm{t}, 1 \mathrm{H}) \\ J(\mathrm{PH})=24.3 \end{gathered}$ | 0.50 (s, 6H) | 1.89 (d, 2H); 2.61 (d, 2H) | 2.4-2.6 (m, 4H) |
|  |  |  | 0.73 (s, 6H) | $J=13.9 \quad J=13.9$ |  |
|  |  |  |  | 2.73 (d, 2H); 3.18 (d, 2H) |  |
|  |  |  |  | $J=13.9 \quad J=13.9$ |  |
| $\underset{(10)}{\left\{\mathrm{RuH}^{\left(\mathrm{PPh}_{3}\right)} \mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right\}^{+f}}$ | 1875 | $\begin{gathered} -10.3(\mathrm{~d}, 1 \mathrm{H}) \\ J(\mathrm{PH})=22.9 \end{gathered}$ | 0.58 (s, 3H) | $1.88(\mathrm{~d}, 1 \mathrm{H}) ; 2.39(\mathrm{~d}, 1 \mathrm{H})$ | 1.73 (m, 1H) |
|  |  |  | 1.03 (s, 3H) | $J=12.7 \quad J=11.7$ | 2.46 (m, 1H) |
|  |  |  | 1.21 (s, 3H) | 2.59 (d, 1H); 2.64 (d, 1H) | 2.96 (m, 1H) |
|  |  |  | 1.26 (s, 3H) | $J=13.7 \quad J=12.7$ | 2.98 (m, 1H) |
|  |  |  |  | 2.80 (d, 1H); 2.97 (d, 1H) | 3.10 (m, 1H) |
|  |  |  |  | $J=13.7 \quad J=11.7$ | 3.20 (m, 1H) |
|  |  |  |  | 3.34 (d, 1H); 3.56 (d, 1H) | 3.32 (m, 1H) |
|  |  |  |  | $J=12.7 \quad J=12.7$ | 3.56 (m, 1H) |

[^2]are practically insoluble, while the latter two are readily soluble. The difference in solubility between 4 and 5 is associated with their molecular packings in crystals rather than the ionic character of the $\mathrm{Ru}-\mathrm{Cl}$ bonds (vide infra).

In sharp contrast to the cis geometry of the parent dichlorides where the crown thioethers adopt a folded form, the ${ }^{1} \mathrm{H}$ NMR spectra of 4-6 (Table 2) indicate that the macrocycles girdle the equatorial positions. This type of planar coordination gives rise to five, six, and four possible conformers for 4, 5 and 6, respectively (Fig. 1). The observation of two signals for each Me and $\mathrm{CH}_{2}$ group of the $\mathrm{RuSCH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{~S}$ rings of 4 is only consistent with a syn conformation of $\mathrm{Me}_{4}[14]$ ane $\mathrm{S}_{4}$ with mutually trans hydrido and chloro ligands at the axial sites. In contrast, the ${ }^{1} \mathrm{H}$ NMR spectrum of 5 exhibiting four Me and six $\mathrm{CH}_{2}$ proton signals due to the fused three $\mathrm{RuSCH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{~S}$ rings fails to discriminate between the two possible conformers, syn and one of two anti forms (up-down-down-up). In the latter, the middle and two outer six-membered chelate rings assume chair and twist forms, respectively. A syn conformation of $\mathrm{Me}_{6}[15]$ $\mathrm{aneS}_{4}$ was confirmed by the X -ray structure of 5 (vide infra). Due to the axial asymmetry expected for the syn-conformer, two geometrical isomers are possible for 4 and 5. However, the ${ }^{1} H$ NMR and IR spectra indicate the presence of only one isomer both in solution and in the solid state. The relative position of
hydrido and chloro ligands with respect to the ring carbon atoms of the syn-macrocycles was determined unequivocally by the X-ray structural analyses of 4 and 5 (vide infra). The $\mathrm{Me}_{8}[16] \mathrm{aneS}_{4}$ ligand in 6 also assumes a syn conformation. However, the spectral data indicate the existence of two possible geometrical isomers 6a and 6b shown in Scheme 1 in a ratio of 2:3.

An ionic character of the binuclear $\mu$-hydrido complex $\left\{\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H}) \mathrm{Cl}\left(\text { syn }-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)_{2}\right\} \mathrm{Cl}$ (7) was shown by the metathesis reaction with $\mathrm{NaBPh}_{4}$ in MeOH affording the corresponding salt. The ${ }^{1} \mathrm{H}$ NMR spectrum shows the presence of two inequivalent hydrido ligands and two chemically different $\mathrm{Me}_{4}[14]$ ane$\mathbf{S}_{4}$ macrocycles both adopting syn conformation (Table 2). The observation of a very strong $\nu(\mathrm{Ru}-\mathrm{H})$ band due to the terminal hydride at $1820 \mathrm{~cm}^{-1}$, which is considerably lower in frequency than that ( $1958 \mathrm{~cm}^{-1}$ ) of 4 , indicates the presence of a $\mu$-hydride of strong trans influence at the opposite axial site rather than a $\mu-\mathrm{Cl}$ ligand. Consistent with this, a strong coupling between the two hydrido ligands are observed with ${ }^{2} J(\mathrm{HH})$ of 13.9 Hz . The single crystal X-ray diffraction study of 7 confirmed unequivocally the structural features proposed on the basis of the spectral data (vide infra). A plausible step for the formation of 7 may be a nucleophilic attack of the hydrido ligand of 4 on a five-coordinated $\left[\mathrm{RuH}\left(s y n-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)\right]^{+}$species formed through dissociation of the chloro ligand. A related nucleophilic substitution of the Cl ligand in cis-


Scheme 1.


Scheme 2.
$\left.\mathrm{PtH}(\mathrm{Cl}) \mathrm{L}\left(\mathrm{L}=\left({ }^{\mathrm{t}} \mathrm{Bu}\right)_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{P}{ }^{(t \mathrm{Bu}}\right)_{2}\right)$ by the hydrido ligand of the corresponding dihydride $c i s-\mathrm{PtH}_{2} \mathrm{~L}$ has been proposed for the formation of $\left[\mathrm{Pt}_{2}(\mathrm{H})_{2}(\mu-\mathrm{H})-\right.$ $\left.\mathbf{L}_{2}\right]^{+}$[18]. The facile dissociation of the coordinated chloro ligand in 4 is manifested by the precipitation of $\left\{\mathrm{RuH}\left(\right.\right.$ syn $\left.-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right\} \mathrm{BPh}_{4}$ (8) on addition of $\mathrm{NaBPh}_{4}$ to the EtOH solution. A tetragonal pyramidal structure with four S atoms of $\operatorname{syn}-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}$ in the basal plane and the hydrido ligand at the apical site was deduced from the spectral data (Table 2). An alternative octahedral structure with the coordinated solvent at the vacant axial site was readily excluded from the elemental analysis and absence of $\nu(\mathrm{C}=\mathrm{O})$ band in the IR spectrum of the sample recrystallized from acetone. However, an attempt to prepare 7 by treating 4 and 8 in acetone failed, both starting materials being recovered unchanged. Rationales for the ring size effect of crown thioethers and the solvent effect observed for the formation of the cationic $\mu$-hydrido complex 7, as well as its formation mechanism, still remain to be elucidated.

In view of the facile and complete substitution of all $\mathrm{PPh}_{3}$ ligands in $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ by the $14-16$-membered quadridentate crown thioethers, the corresponding reactions of $\mathrm{RuH}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{3}$ may provide an alternative route to 4-6. Indeed, one of the coordinated $\mathrm{PPh}_{3}$ in $\mathrm{RuH}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{3}$ was readily displaced by $\mathrm{Me}_{4}[14]$ ane$\mathbf{S}_{4}$ at room temperature in dimethoxyethane affording $\mathrm{RuH}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ (9) in a reasonable yield. The ${ }^{1} \mathrm{H}$ NMR spectrum shows a hydrido signal as a triplet with $J(\mathrm{PH})=24.3 \mathrm{~Hz}$ which is in the range of magnitude of cis coupling constants between a hydrido and phosphine phosphorus atom in $\mathrm{Ru}^{\text {II }}$ complexes [18]. The observation of two methyl and four $\mathrm{CH}_{2}$ proton signals due to the $\mathrm{SCH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{~S}$ groups suggests that the molecule possesses $C_{s}$ symmetry. Thus, the hydrido ligand is $c i s$ to the two mutually $c i s$ $\mathrm{PPh}_{3}$ ligands and $\mathrm{Me}_{4}[14]$ aneS ${ }_{4}$ coordinates as a bidentate ligand at the equatorial sites forming a RuS$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ ring rather than a six-membered chelation. The plausible structure deduced from the spectral data is shown in Scheme 2. An attempt to prepare 4 by


Fig. 2. Molecular structure of trans- $\mathrm{RuH}(\mathrm{Cl})\left(s y n-\mathrm{Me}_{4}[14] a n e S_{4}\right)$ (4). Thermal ellipsoids are drawn at $50 \%$ probability.


Fig. 3. Molecular structure of trans- $\mathrm{RuH}\left(\mathrm{ClO}_{\left(s y n-\mathrm{Me}_{6}[15] \mathrm{aneS}_{4}\right)}\right.$ (5). Thermal eliipsoids are drawn at $50 \%$ probability.
heating 9 in dme (dimethoxyethane) or toluene $\left(80^{\circ} \mathrm{C}\right)$ failed, 9 being recovered unchanged. This is in sharp contrast to the complete displacement of $\mathrm{PPh}_{3}$ ligands in $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ by the crown thioethers under similar
conditions. On dissolving 9 in MeOH at room temperature, however, both the chloro anion and one of two $\mathrm{PPh}_{3}$ ligands dissociated readily affording cis- $\{\mathrm{RuH}$ $\left.\left(\mathrm{PPh}_{3}\right)\left(\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)\right) \mathrm{Cl}(10)$, which was isolated as

TABLE 3. Selected bond distances $(\AA)$ and angles $\left({ }^{\circ}\right)$ of $\operatorname{trans}-\mathrm{RuH}(\mathrm{Cl})(s y n-\mathrm{L})\left(4, \mathrm{~L}=\mathrm{Me}_{4}[14]\right.$ aneS $\mathbf{S}_{4} ; 5, \mathrm{~L}=\mathrm{Me}_{6}[15]$ aneS $\left.\mathbf{S}_{4}\right)$

| 4 |  |  |  | 5 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ru-H | 1.68(8) | $\mathrm{H}-\mathrm{Ru}-\mathrm{Cl}$ | 174.5(23) | Ru-H | 1.534(7) | $\mathrm{H}-\mathrm{Ru}-\mathrm{Cl}$ | 173.6(24) |
| $\mathbf{R u}-\mathbf{C l}$ | 2.559(2) | $\mathrm{H}-\mathrm{Ru}-\mathrm{S}(1)$ | 85.3(22) | $\mathrm{Ru}-\mathrm{Cl}$ | 2.618(2) | H-Ru-S(1) | 86.6(23) |
| Ru-S(1) | 2.280(2) | H-Ru-S(4) | 85.1(22) | Ru-S(1) | 2.295(3) | H-Ru-S(4) | 83.1(25) |
| Ru-S(4) | 2.307(2) | H-Ru-S(8) | 89.5(22) | Ru-S(4) | 2.308(2) | $\mathrm{H}-\mathrm{Ru}-\mathrm{S}(8)$ | 85.3(23) |
| Ru-S(8) | 2.308(2) | H-Ru-S(11) | 90.0(22) | Ru-S(8) | 2.298(3) | $\mathrm{H}-\mathrm{Ru}-\mathrm{S}(12)$ | 94.9(25) |
| Ru-S(11) | 2.292(2) | $\mathrm{Cl}-\mathrm{Ru}-\mathrm{S}(1)$ | $90.0(1)$ | Ru-S(12) | 2.316(2) | $\mathrm{Cl}-\mathrm{Ru}-\mathrm{S}(1)$ | 97.2(1) |
| $\mathrm{S}(1)-\mathrm{C}(2)$ | 1.821(5) | S(1)-Ru-S(4) | 87.5(1) | S(1)-C(2) | $1.838(8)$ | $\mathbf{S ( 1 ) - R u - S ( 4 )}$ | 84.8(1) |
| $\mathrm{S}(1)-\mathrm{C}(14)$ | 1.822(6) | $\mathbf{S ( 1 ) - R u - S ( 8 )}$ | 173.9(1) | S(1)-C(15) | 1.808(7) | $\mathrm{S}(1)-\mathrm{Ru}-\mathrm{S}(8)$ | 171.4(1) |
| $S(4)-C(3)$ | 1.837(5) | S(1)-Ru-S(11) | 94.9(1) | S(4)-C(3) | 1.838(8) | $\mathrm{S}(1)-\mathrm{Ru}-\mathrm{S}(12)$ | 87.8(1) |
| $S(4)-C(5)$ | 1.821(5) | S(4)-Ru-S(8) | 89.1(1) | S(4)-C(5) | 1.817(6) | S(4)-Ru-S(8) | 91.4(1) |
| S(8)-C(7) | 1.826 (5) | S(4)-Ru-S(11) | 174.4(1) | S(8)-C(7) | 1.841(6) | S(4)-Ru-S(12) | 172.5(1) |
| S(8)-C(9) | 1.819(7) | S(8)-Ru-S(11) | 88.1(1) | S(8)-C(9) | 1.825(6) | S(8)-Ru-S(12) | 95.6(1) |
| S(11)-C(10 | 1.839(7) |  |  | S(12)-C(11) | 1.820(6) |  |  |
| S(11)-C(12) | 1.825(5) |  |  | S(12)-C(13) | 1.818(6) |  |  |
| Intramolecular non-bonded contacts |  |  |  |  |  |  |  |
| $\mathrm{H} \cdots \mathrm{H}(\mathrm{C}(2))$ | 2.60 |  |  | $\mathrm{Cl} \cdots \mathrm{H}(\mathrm{C}(3)$ ) | 2.93 |  |  |
| H $\cdots$ H(C(5)) | 2.34 |  |  | Cl $\cdots$ H(C(5)) | 2.77 |  |  |
| H $\cdots \mathrm{H}(\mathrm{C}(7))$ | 2.40 |  |  | $\mathrm{Cl} \cdots \mathrm{H}(\mathrm{C}(7))$ | 2.84 |  |  |
| H $\cdots$ H(C(10)) | 2.76 |  |  | $\mathrm{Cl} \cdots \mathrm{H}(\mathrm{C}(9)$ ) | 3.15 |  |  |
| H $\cdots \cdot \mathrm{H}(\mathrm{C}(12))$ | 2.76 |  |  | Cl $\cdots$ H(C(11)) | 3.22 |  |  |
| H $\cdots$ H(C(14)) | 2.65 |  |  | $\mathrm{Cl} \cdots \mathrm{H}(\mathrm{C}(15))$ | 2.83 |  |  |

the $\mathrm{BPh}_{4}^{-}$salt. The ${ }^{1} \mathrm{H}$ NMR spectrum suggests a cis disposition of the hydrido and $\mathrm{PPh}_{3}$ ligands with a folded tetradentate coordination of $\mathrm{Me}_{4}[14]$ aneS $_{4}$. An attempt to prepare $\mathrm{RuH}\left(\mathrm{Cl}^{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Me}_{8}[16] \mathrm{aneS}_{4}\right)$ by treating $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{3}$ with the corresponding crown thioether under similar reaction conditions employed for the preparation of 9 failed. Both starting materials were recovered unchanged.
2.2. Crystal and molecular structures of trans-RuH(Cl) (syn-L) (4, L=Me ${ }_{4}[14]$ aneS $_{4} ; 5, L=M e_{6}$ [15]aneS ${ }_{4}$ ) and $\left\{\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H}) \mathrm{Cl}\left(\mathrm{syn}-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)_{2}\right\} \mathrm{Cl}$ (7)

Figures 2 and 3 show the molecular structures of 4 and 5 as determined by an X-ray diffraction study with a numbering scheme, respectively. Bond lengths and angles are compiled in Table 3. The geometry about the Ru atom of both hydrides is slightly distorted octahedral with the four $S$ atoms of the syn-crown thioethers in the equatorial plane and the hydrido and chloro ligands at the axial positions. The average $\mathrm{Ru}-\mathrm{S}$ distance ( $2.297(2) \AA$ ) of 4 is comparable with that (2.304(3) $\AA$ ) of 5 . These bonds are significantly shorter than the corresponding separations trans to the $S$ atom found in cis- $\mathrm{RuCl}_{2}[14] \mathrm{aneS}_{4}(2.336(1) \AA)[16],[\mathrm{Ru}([12]-$ $\left.\left.\mathrm{aneS}_{3}\right)_{2}\right]^{2+}(2.3728(4) \AA)[20]$ and $\left[\left(\mathrm{Ru}[9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}$ (2.339(1) $\AA$ [21], 2.332(1) $\AA$ [22]). The contraction is probably due to the small cavity of syn-Me ${ }_{4}[14]$ ane $_{4}$ and syn- $\mathrm{Me}_{6}[15] \mathrm{aneS}_{4}$ compared to the ionic radius of the $\mathrm{Ru}^{\mathrm{Il}}$ ion. In fact, the Ru atom in $\mathbf{4}$ and 5 is forced to deviate from the 4 S plane defined by the four S atoms with the pyramidal distortion (average trans S-Ru-S angle $174.1(1)^{\circ}$ and $172.0(1)^{\circ}$, respectively). It is worth noting that the two hydrides differ in the location of the hydrido ligand at the axial sites of very different stereochemical congestion. The Ru atoms in 4 and 5 are also displaced from the $4 S$ plane in different directions; in the latter towards the congested axial site surrounded by the ring $C$ atoms by 0.099 (1) $\AA$, while in the former towards the opposite uncluttered side by $0.101(1) \AA$. The deviation of the four $S$ atoms from the least-squares $4 S$ plane is $\pm 0.001(1) \AA$ for 4 and $\pm 0.060$ (2) $\AA$ for 5 . The rationale for the differences is discussed later.

The interesting solubility difference in aromatic hydrocarbons between 4 and 5 may be accounted for by their molecular packings in crystals (Fig. 4). The crystal structure of the former is acentric and the trans-H-$\mathrm{Ru}-\mathrm{Cl}$ dipoles align in the same direction along the $c$-axis, while that of the latter is centric and the dipoles are totally cancelled out. Thus, the insolubility of the former and the high solubility of the latter in toluene are ascribed to the presence and absence of an intrinsic polarization in their crystals, respectively. In contrast, the short $\mathrm{Ru}-\mathrm{Cl}$ distance (2.559(2) $\AA$ ) of 4 com-

(b)


Fig. 4. Crystal packings of trans-RuH(Cl)(syn-Me [ $_{4}[14]$ aneS $_{4}$ ) (4) (a) and trans-RuH $(\mathrm{Cl})\left(\right.$ syn- $\left.\mathrm{Me}_{6}[15] \mathrm{aneS}_{4}\right)$ (5) (b).
pared to that ( $2.618(2) \AA$ ) of 5 indicates that the polarization of the $\mathrm{Ru}-\mathrm{Cl}$ bond in the former is less than that of the latter.

The molecular structure of 7 is depicted in Fig. 5 with the atom numbering scheme. The important bond
lengths and angles are shown in Table 4. As deduced from the spectral data, the two fragments RuH (syn$\left.\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ and $\mathrm{RuCl}\left(s y n-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ with a face to face disposition are connected together through the bridging hydride $\left(\mathrm{H}_{\mathrm{b}}\right)$. Both the terminal hydride ( $\mathrm{H}_{\mathrm{t}}$ ) and Cl ligands in these fragments are located at the congested axial sites. Note that the axial site occupied by the Cl ligand differs from that found for 4 . The Cl , Ru1 and Ru2 atoms are exactly colinear. The leastsquares plane defined by the four S atoms of the $\mathrm{RuCl}\left(s y n-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ moiety is also strictly parallel with the corresponding plane of the other fragment. The deviations of the $S$ atoms from the $4 S$ plane in the former and the latter are $\pm 0.019(5)$ and $\pm 0.040$ (4) $\AA$, respectively. The equatorial 4 S planes of the two fragments are mutually staggered with the torsion angle S1(1)-Ru1-Ru2-S2(4) of 54.3(1) ${ }^{\circ}$ (Fig. 5(b)). Thus, the molecule possesses crystallographic $C_{2}$ symmetry. The $\mathrm{Ru} 1-\mathrm{H}_{\mathrm{h}}, \mathrm{Ru} 2-\mathrm{H}_{\mathrm{b}}$, and Ru2- $\mathrm{H}_{\mathrm{t}}$ lengths are $1.82(15)$, $1.60(15)$, and 1.69 (13) $\AA$, respectively. The average Ru1-S and Ru2-S distances (2.292(3) and 2.299(3) A., respectively) are very similar to the corresponding mean separations found in 4 and 5 (vide supra).
2.3. Ring size effect of the crown thioethers upon the discrimination of axial ligands and the structural flexibility of syn-Me ${ }_{4}$ [14]aneS ${ }_{4}$

The most conspicuous difference in the structures between 4 and 5 is the position of the hydrido ligand (and chloro anion) at the stereochemically different axial sites. Thus, the hydrido ligand in the former is located specifically at the congested site, while in the latter at the uncongested site. The $\mathrm{Ru}-\mathrm{H}$ distances of 4 and 5 are $1.68(8)$ and $1.534(7) \AA$, respectively. The hydrido ligand in 4 is in van der Waals contact with the axial hydrogen atoms of the ring $C(5)$ and $C(7)$ atoms
with non-bonded distances of 2.34 and $2.40 \AA$, respectively (Table 3). This probably indicates that the cavity created by the ring C atoms of the $\mathrm{Ru}\left(s y n-\mathrm{Me}_{4}[14]\right.$ ane$\mathrm{S}_{4}$ ) moiety is suitable in size to accommodate the hydrido ligand, but is too small for the Cl anion. On increasing the ring size of crown thioethers from the 14 - to the 15 -membered ring, the cavity around the congested axial site is dilated enough to admit the more bulky chloro ligand. Then a question arises concerning the origin for the discrimination of the two anionic ligands. The stereospecific coordination of the chloro ligand rather than the hydride at the congested axial site in 5 may be explained by attractive van der Waals interactions with the axial $\mathrm{CH}_{2}$ hydrogen atoms of syn-Me ${ }_{6}[15]$ ane $\mathrm{S}_{4}$, their non-bonded distances being in the range of 2.77-3.22 $\AA$ (Table 3). In contrast, the corresponding cavity of the 16 -membered crown thioether in 6 may be too large compared to the stereochemical size of the hydrido and chloro ligands, and fails to discriminate between these ligands allowing two geometrical isomers $\mathbf{6 a}$ and $\mathbf{6 b}$ to exist both in solution and in the solid state. The coordination of the Cl atom at the congested axial site in the $\mathrm{RuCl}\left(\right.$ syn- $\mathrm{Me}_{4}[14]$ ane$\mathrm{S}_{4}$ ) moiety of 7 is rather surprising in view of the specific occupation of the hydrido ligand at the stereochemically cluttered axial site in 4 . The direction of the Ru atom displacement from the 4 S plane in the RuCl (syn-Me ${ }_{4}[14]{ }^{2}{ }^{2} S_{4}$ ) fragment also differs from that of the $\mathrm{RuH}\left(\operatorname{syn}-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ moiety; in the former the Ru1 atom shifts towards the congested side by 0.043(2) $\AA$, while in the latter the Ru2 atom shifts towards the opposite uncluttered side by $0.126(2) \AA$. The magnitude of the deviation of the Ru2 atom is comparable with that of 4 and its direction is the same for both hydrides (vide supra). The geometrical features about the Ru atoms in the $\mathrm{RuCl}\left(\right.$ syn $\left.-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ in 7 and

TABLE 4. Selected bond distances ( A ) and angles ( ${ }^{\circ}$ ) of $\left\{\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H}) \mathrm{Cl}\left(s y n-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)_{2}\right] \mathrm{Cl}(7)$

| RuH(syn- $\mathrm{Me}_{4}$ [14]aneS ${ }_{4}$ ) moiety |  |  |  | RuCl(syn-Me ${ }_{4}$ [14]aneS ${ }_{4}$ ) moiety |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ru} 1 \cdots \mathrm{Ru} 2$ | 3.410(2) | $\mathrm{Ru} 1-\mathrm{H}_{\mathrm{b}}-\mathrm{Ru} 2$ | 180 | Ru1-Cl | 2.589(4) | $\mathrm{Cl}-\mathrm{Rul-H}$ | 180 |
| Ru2-H ${ }_{\text {t }}$ | 1.69(13) | $\mathrm{H}_{\mathrm{t}}-\mathrm{Ru} 2-\mathrm{H}_{6}$ | 180 | Ru1- $\mathrm{H}_{6}$ | 1.82(15) | Cl-Ru1-S1(1) | 90.6(1) |
| $\mathrm{Ru} 2-\mathrm{H}_{\mathrm{b}}$ | 1.60(15) | $\mathrm{H}_{\mathrm{t}}-\mathrm{Ru} 2-\mathrm{S} 2$ (1) | 85.9(1) | Ru1-S1(1) | 2.291(3) | Cl-Rul-S1(4) | 91.6(1) |
| Ru2-S2(1) | 2.299(3) | $\mathrm{H}_{\mathrm{t}}-\mathrm{Ru} 2-\mathrm{S} 2(4)$ | 87.8(1) | Ru1-S1(4) | 2.293(3) | $\mathrm{H}_{\mathrm{b}}$-Rul-S1(1) | 89.4(1) |
| Ru2-S2(4) | 2.299(3) | $\mathrm{H}_{\mathrm{b}}-\mathrm{Ru} 2-\mathrm{S} 2(1)$ | 94.1(1) | S1(1)-C1(2) | 1.814(15) | $\mathrm{H}_{\mathrm{b}}-\mathrm{Ru}-\mathrm{S} 1$ (4) | 88.4(1) |
| S2(1)-C2(2) | 1.827(15) | $\mathrm{H}_{\mathrm{b}}$-Ru2-S2(4) | 92.2(1) | S1(4)-C1(3) | 1.806(15) | S1(1)-Rul-S1(4) | 87.7(1) |
| S2(4)-C2(3) | 1.791 (15) | S2(1)-Ru2-S2(4) | 87.4(1) | S1(4)-C1(5) | 1.844(16) | S1(1)-Ru1-S1(4') | 92.3(1) |
| S2(4)-C2(5) | 1.835(13) | S2(1)-Ru2-S2(4) | 92.3(1) |  |  | S1(1)-Ru1-S1(1') | 178.8(2) |
|  |  | S2(1)-Ru2-S2(1') | 171.7(1) |  |  | S1(4)-Ru1-S1(4') | 176.9(2) |
|  |  | S2(4)-Ru2-S2(4') | 175.7(2) |  |  |  |  |
| Intramolecular non-bonded contacts |  |  |  |  |  |  |  |
| $\mathrm{H}_{\mathbf{t}} \cdots \mathrm{H}(\mathrm{C} 2(2))$ | 3.02 |  |  | $\mathrm{Cl} \cdots \mathrm{H}(\mathrm{C} 1(2))$ | 3.23 |  |  |
| $\mathrm{H}_{\mathbf{t}} \cdots \mathrm{H}(\mathrm{C} 2(5))$ | 2.51 |  |  | $\mathrm{Cl} \cdots \mathrm{H}(\mathrm{Cl}(5))$ | 2.74 |  |  |
| $\mathrm{H}_{\mathbf{t}} \cdots \mathrm{H}(\mathrm{C} 2(7))$ | 2.45 |  |  | $\mathrm{Cl} \cdots \mathrm{H}(\mathrm{C} 1$ (7)) | 2.61 |  |  |



Fig. 5. Molecular structure of the cation of $\left\{\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H})(\mathrm{Cl})(\right.$ syn$\mathrm{Me}_{4}\left[14 \mathrm{~J} \mathrm{aneS}_{4}\right)_{2} \mathrm{JCl}$ (7) showing a side view (a) and a top view along the $C_{2}$ axis (b). Thermal ellipsoids are drawn at $50 \%$ probability.
$\mathrm{RuH}\left(\operatorname{syn}-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ moieties in 4 and 7 may be rationalized in terms of the different steric requirements of the two anionic ligands. The spatial volume surrounded by the ring C atoms of syn-Me [14]ane $\mathrm{S}_{4}$ in 4 proved to have the exact size to accommodate the hydrido ligand. The non-bonded distances between the hydrido ligand and axial $\mathrm{CH}_{2}$ hydrogen atoms of the $\mathrm{RuH}\left(\right.$ syn $\left.-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ moiety in $7(\mathrm{H} \cdots \mathrm{H}(\mathrm{C} 2(5))$ 2.51 and $\mathrm{H} \cdots \mathrm{H}(\mathrm{C} 2(7)) 2.45 \AA$ ) are also comparable with those found in 4 . Therefore, to admit the more bulky Cl ligand into the congested axial site of Ru (syn- $\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}$ ) moiety, the room should be dilated by bending down the $\mathrm{S}-\mathrm{C}$ vectors towards the equatorial plane. Such deformation of the syn-Me ${ }_{4}[14] \mathrm{aneS}_{4}$
would displace the Ru atom from the 4 S plane towards the congested side along the $C_{2}$ axis as shown schematically below. By contrast, an upright deformation of the C-S vectors would induce the deviation towards the opposite uncongested side, which is the case observed for the $\mathrm{RuH}\left(s y n-\mathrm{Me}_{4}[14]\right.$ ane $\mathrm{S}_{4}$ ) moiety in 4 and 7. Indeed, the crown thioether in the $\mathrm{RuCl}\left(s y n-\mathrm{Me}_{4}[14]\right.$ ane $\mathrm{S}_{4}$ ) moiety is flattened as shown by the acute dihedral angle $\left[47.4\left(6^{\circ}\right)\right.$ ] between the 4 S plane and the least-squares plane defined by the $\mathrm{S} 1(1), \mathrm{S} 1(4), \mathrm{C} 1(5)$, and $\mathrm{C} 1(7)$ atoms of the $\mathrm{RuSCH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{~S}$ ring compared to the corresponding angles of the $\mathrm{RuH}($ syn$\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}$ ) moiety in 4 and 7 (52.5(2) (average) and $53.9(5)^{\circ}$, respectively). Such a displacement of the Ru atom towards the congested axial site may reduce the steric repulsion between the Cl ligand and axial $\mathrm{CH}_{2}$ hydrogen atoms.

$\mathrm{RuCl}\left(\right.$ syn- $\left.\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$


RuH $\left(\right.$ syn-Me ${ }_{4}[14] \mathrm{aneS}_{4}$ )

Despite the dilation of the cavity and the displacement of the Ru atom towards the Cl atom, the nonbonded distances between the Cl and axial $\mathrm{CH}_{2}$ hydrogen atoms at $\mathrm{C} 1(5)$ and $\mathrm{C} 1(7)(2.74$ and $2.61 \AA$, respectively) are still significantly shorter than the sum of the corresponding van der Waals radii. To avoid the stereochemical repulsions between these atoms as much as possible, the Ru1-Cl bond (2.589(4) $\AA$ ) is elongated compared to that of 4 (2.559(2) $\AA$ ) and trans-RuH$\left(\mathrm{Cl}_{2}\right)(\text { diop })_{2}(2.549(1) \AA)$ [23]. The deviation of the Ru atom in 5 from the 4 S plane towards the congested axial site can also be explained similarly. The $\mathrm{Ru}-\mathrm{Cl}$ distance ( $2.618(2) \AA$ ) is again longer than that of 4 .
2.4. Linear $\mathrm{Ru} u-H-R u$ linkage in $\left\{R u_{2} H(\mu-H) C l(s y n-\right.$ $\mathrm{Me}_{4}$ [14]aneS $\left.\left._{4}\right)_{2}\right\} \mathrm{Cl}$ (7)

In view of the crystallographic $C_{2}$ symmetry of 7 , the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ bond is expected to be linear. The single and unsupported $\mathrm{M}-\mathrm{H}-\mathrm{M}$ bond of transition metals, however, is known to be inherently bent $[6,10,11]$ and this is also the case observed for a $\mathrm{Cr}-\mathrm{H}-$ Cr linkage in $\left[\mathrm{Cr}_{2}(\mu-\mathrm{H})(\mathrm{CO})_{10}\right]^{-}$possessing a $D_{4 h}$ non-hydrido framework $\left[\mathrm{Cr}_{2}(\mathrm{CO})_{10}\right]$ [24]. Coupled with the intrinsic limitations of the X-ray diffraction method to determine an accurate hydrido position of heavy transition metal complexes [25], the poor quality of the bond parameters of the $\mathrm{H}_{\mathrm{b}}$ ligand in 7 prevents us from delineating the geometry of the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ bond explicitly. The root mean square amplitude of thermal displacement of the $\mathrm{H}_{\mathrm{b}}$ atom normal to the $\mathrm{Ru} \cdots \mathrm{Ru}$ vector is $0.2(3) \AA$. However, it is worth reminding
ourselves here that the $\mathrm{H}_{\mathrm{b}}$ ligand is completely surrounded by the tightly interlocked free lone pair orbitals on the S atoms of the $\mathrm{RuH}\left(\right.$ syn $-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}$ ) and $\mathrm{RuCl}\left(\right.$ syn $-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}$ ) moieties in a staggered conformation. Should the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ bond bend and/ or rotate, a severe electrostatic repulsion between the $S$ free lone pair electrons of the above two moieties would be expected. To estimate this effect on the geometry of the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ linkage and on the conformation of the $4 S$ equatorial planes of the two moieties, extended Hückel MO calculations were carried out on a hypothetical model compound $\left\{\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H}) \mathrm{Cl}[s y n-\right.$ $\left.\left.\left(\mathrm{SH}_{2}\right)_{4}\right]_{2}\right)^{+}$of $C_{4 v}$ symmetry. A Walsch diagram and the total energy as a function of the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ angle $(\varphi)$ is shown in Fig. 6. Apparently, the total energy increases sharply on bending the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ linkage in the symmetry plane from linearity. The molecular or-
bitals relevant to the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ bond in $C_{4 v}$ symmetry are a bonding $1 \mathrm{a}_{1}$ and a non-bonding $2 \mathrm{a}_{1}$ consisting mainly of $\mathrm{Ru} \mathrm{d}_{\mathrm{z}} 2$ and $\mathrm{S} p$ atomic orbitals with $\mathrm{H}_{\mathrm{b}} \mathrm{s}$ and $S$ s orbitals mixing in for $1 a_{1}$ and $2 a_{1}$, respectively. These orbitals are relatively low-lying and fully occupied. The increment in total energy assessed on deformation from $C_{4 v}$ to $C_{s}$ symmetry is principally ascribed to the elevation of the $2 \mathrm{a}_{1}$ orbitals ( $2 \mathrm{a}^{\prime}$ in $C_{s}$ ) in energy. The destabilization arises from an increase in antibonding interactions between $\mathrm{d}_{\mathrm{z3}}$ orbitals of the Ru atoms and between the free lone pair orbitals on the S atoms of the $\mathrm{RuH}\left[s y n-\left(\mathrm{SH}_{2}\right)_{4}\right]$ and $\mathrm{RuCl}\left[\right.$ syn- $\left.\left(\mathrm{SH}_{2}\right)_{4}\right]$ moieties. The $\mathrm{Ru} \cdots \mathrm{Ru}$ overlap populations calculated for $2 \mathrm{a}_{1}$ and $2 \mathrm{a}^{\prime}$ at $\varphi=160^{\circ}$ are -0.002 and -0.009 , respectively, while the corresponding values between the $S$ atom of one moiety and the nearest two $S$ atoms of the other moiety are -0.004 at $\varphi=180^{\circ}$


Fig. 6. A Walsch diagram and total energy of $\left\{\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H})(\mathrm{Cl})\left[\operatorname{syn}-\left(\mathrm{SH}_{2}\right)_{4}\right]_{2}\right\}^{+}$as a function of the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ angle $(\varphi)$.
and -0.146 at $160^{\circ}$. Thus, the antibonding interaction between the lone pair orbitals on $S$ atoms induced on bending plays a principal role in favoring the linear geometry of the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ linkage. The destabilization in total energy assessed on bending from linearity by $20^{\circ}$ is 0.78 eV (Fig. 6).

All the structural and spectral evidence for the single unsupported $\mu$-hydrido bonds of transition metals so far studied support the bent geometry and Bau et al. have suggested a 'closed' $\mathrm{M}-\mathrm{H}-\mathrm{M} 3 \mathrm{c}-2 \mathrm{e}$ bond to represent such bonding, where metal-metal bonding interaction is appreciable and the non-bonding molecular orbital relevant to the $\mathrm{M}-\mathrm{H}-\mathrm{M}$ bond is unoccupied [11].



In accord with a long Ru1 $\cdot \mathrm{Ru} 2$ separation (3.410(2) $\AA$ ), the total overlap population between two Ru atoms ( 0.012 ) for a linear $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ geometry is negligibly small and this is also the case for the bent one ( 0.009 ) with $\varphi=160^{\circ}$ where the $\mathrm{Ru} \cdots \mathrm{Ru}$ distance is assessed to be $3.35 \AA$. The geometrical deformation of the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ linkage again does not affect the $\mathrm{Ru}-\mathrm{H}_{\mathrm{b}}$ bond strengths. Thus, the overlap populations for the $\mathrm{H}_{\mathrm{b}}-\mathrm{RuCl}\left[\operatorname{syn}-\left(\mathrm{SH}_{2}\right)_{4}\right.$ ] and $\mathrm{H}_{\mathrm{b}}-\mathrm{RuH}[$ syn$\left(\mathrm{SH}_{2}\right)_{4}$ ] bonds in $C_{4 v}$ symmetry are 0.326 and 0.285 , respectively and the bond orders remain constant for the bent $C_{s}$ geometry, the respective populations at $\varphi=160^{\circ}$ being 0.326 and 0.285 . Thus, the preferred linear geometry of the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ linkage predicted for


Fig. 7. Variation in the total energy of $\left\{\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H})(\mathrm{Cl})[\right.$ syn$\left.\left.\left(\mathrm{SH}_{2}\right)_{4}\right]_{2}\right\}^{+}$on rotation about the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ linkage.

7 is ascribed to the filled $2 a_{1}$ orbital which gains antibonding character on bending. On the basis of the theoretical study, the $S$ free lone pair orbitals of the $\mathrm{RuH}\left(\operatorname{syn}-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ and $\mathrm{RuCl}\left(\right.$ syn $\left.-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ moieties in the staggered conformation is proved to be crucial in determining the linear $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ geometry. These lone pair orbitals also restrict the rotation about the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ linkage. Indeed, the variations in total energy assessed for the above model on rotation (Fig. 7) reveal that the staggered conformation is 0.82 eV more stable than the eclipsed one, which agrees with the elucidated structure of 7.

Finally it is worth noting that the single and unsupported $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ bond in 7 is stable even in solution as shown by the strong spin-spin coupling between the terminal and bridging hydrides. The possibility for an interconversion between 4 and 7 by changing the solvent from EtOH to MeOH is also readily excluded since the addition of $\mathrm{NaBPh}_{4}$ to the MeOH solution of the latter gave exclusively the corresponding salt rather than 8.

## 3. Concluding remarks

We have clarified two characteristics of the quadridentate crown thioethers adopting a syn conformation which affect the discrimination of anionic ligands at the stereochemically different axial sites and the geometry of the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ linkage in the $\mathrm{Ru}^{11}$ hydrido complexes. On the basis of the structural studies of

4-7, the very different congestion at the axial sites of the $\mathrm{Ru}(\operatorname{syn}-\mathrm{L})$ fragment ( $\mathrm{L}=\mathrm{Me}_{4}[14]$ aneS $_{4}, \mathrm{Me}_{6}[15]$ aneS $_{4}, \mathrm{Me}_{8}[16] \mathrm{aneS}_{4}$ ) was proved to be capable of discriminating between the hydrido and chloro ligands of different steric requirements. The origin for recognition is simply attractive van der Waals interactions between the $\mathrm{CH}_{2}$ axial hydrogen atoms of the macrocycles and the anionic ligand coordinated at the congested axial site. The hole size surrounded by the ring carbon atoms is adjustable by the ring size of the macrocycles. Another important conclusion drawn from the observed geometries of the RuX (syn- $\mathrm{Me}_{4}[14]$ ane$\mathrm{S}_{4}$ ) moiety ( $\mathrm{X}=\mathrm{H}, \mathrm{Cl}$ ) in $\mathbf{4}$ and $\mathbf{7}$ is a flexibility of the syn-crown thioether capable of tuning the hole size depending upon the steric bulkiness of an axial ligand to be accommodated. Such a deformation of the crown thioether ligand can induce the geometrical change about the Ru atom, which may also be expected to modify the electronic property of the metal. Coupled with the complete discrimination of the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{N}$ bonds of PhNCO in trans- $\mathrm{Mo}\left(\eta^{2}-\mathrm{O}, \mathrm{C}-\mathrm{PhNCO}\right)\left(\eta^{2}-\right.$ $\mathrm{C}, \mathrm{N}-\mathrm{PhNCO})\left(\right.$ syn- $\mathrm{Me}_{4}[16] \mathrm{aneS}_{4}$ ) [9], the above results seem to promise that quadridentate crown thioether complexes adopting a syn conformation can recognize a wide variety of anionic and $\pi$-acidic ligands possessing different steric demands on the axial coordination. The coordinated crown thioethers still exhibit free lone pair orbitals. Their effect on the geometry of the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ linkage and the conformation of the RuH (syn- $\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}$ ) and $\mathrm{RuCl}\left(\right.$ syn- $\mathrm{Me}_{4}[14]$ aneS ${ }_{4}$ ) moieties in 7 are elucidated theoreticaily on the basis of the molecular structure. The tight interlocking of the $S$ lonc pair orbitals of the two moieties was shown to be crucial for preventing the bending of and the rotation about the $\mathrm{Ru}-\mathrm{H}-\mathrm{Ru}$ bond. The theoretical calculations and the crystallographic $C_{2}$ symmetry, thus, strongly suggest that 7 represents the first example of dinuclear $\mu$-hydrido complexes with a linear $\mathrm{M}-\mathrm{H}-\mathrm{M}$ linkage.

## 4. Experimental details

All manipulations were carried out under a dinitrogen atmosphere. $\mathrm{Me}_{4}[14] \mathrm{ancS}_{4}$ [26], $\mathrm{Me}_{8}[16]$ aneS $_{4}$ [27], $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{3}$ [28] and $\mathrm{RuH}\left(\mathrm{Cl}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{3}$ [29] were prepared according to known procedures. ${ }^{1}$ HMR and IR spectra were recorded on Jeol GX270 and Jasco IR A-100 spectrometers, respectively.

### 4.1. Preparation of $\mathrm{Me}_{6}[15]$ aneS $_{4}$

To disodium ethanedithiolate ( $13.8 \mathrm{~g}, 0.1 \mathrm{~mol}$ ) in EtOH ( 150 ml ) was added 2,2-dimethyl-3-bromopropanol ( $33.4 \mathrm{~g}, 0.2 \mathrm{~mol}$ ) at room temperature and the mixture was heated under reflux for 12 h . The concen-
trated reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the concentrated extract was distilled to give $2,2,9,9$-te-tramethyl-4,7-dithiadecane-1,10-diol ( $18.5 \mathrm{~g}, 69 \%$ ) as a colorless oil (b.p. $170^{\circ} \mathrm{C} / 10^{-3} \mathrm{mmHg}$ ). ${ }^{1} \mathrm{H}$ NMR (CD$\left.\mathrm{Cl}_{3}\right): \delta 0.97(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ; 2.58\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.75(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}_{2}$ ); 3.43 (s, $1 \mathrm{H}, \mathrm{CH}_{2}$ ).

To an ice-cooled solution of the diol ( $18.5 \mathrm{~g}, 0.069$ mol ) in pyridine ( 300 ml ) methanesulphonyl chloride ( $13.0 \mathrm{~g}, 0.14 \mathrm{~mol}$ ) was added and the mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 10 h . After addition of ice-water ( 850 ml ), the mixture was extracted with $\mathrm{CHCl}_{3}$, washed with dilute HCl and $\mathrm{H}_{2} \mathrm{O}$ successively, dried with $\mathrm{CaCl}_{2}$, and concentrated to give a brown oil.

The crude 2,2,9,9,-tetramethyl-4,7-dithiadecane-1, 10-bis(methylsulphonate) ( $25.9 \mathrm{~g}, 0.13 \mathrm{~mol}$ ) thus ohtained in DMF ( 200 ml ) and disodium 2,2-dimethyl-1, 3-dithiolate ( $11.9 \mathrm{~g}, 0.66 \mathrm{~mol}$ ) in DMF ( 200 ml ) were added by the high dilution method to DMF ( 1800 ml ) at $60-70^{\circ} \mathrm{C}$ for 24 h and the mixture was heated at the same temperature range with stirring for an additional 48 h . The concentrated mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{H}_{2} \mathrm{O}$. Chromatography (silica gel, eluant hexane/benzene, 9:1) and subsequent recrystallization of the concentrated residue from pentane/ MeOH gave the crown thioether ( $14.1 \mathrm{~g}, 58.2 \%$ ) as colorless crystals, m.p. $72-74^{\circ} \mathrm{C}$. Anal. Found: C, 55.28; $\mathrm{H}, 9.12 . \mathrm{C}_{17} \mathrm{H}_{34} \mathrm{~S}_{4}$ calcd.: C, $55.74 ; \mathrm{H}, 9.29 \% .{ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ): $\delta 1.02(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}) ; 1.06$ (s, $3 \mathrm{H}, \mathrm{Me}$ ); 2.25 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$ ) $2.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.67$ (s, 2 H , $\mathrm{CH}_{2}$ ); $2.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.
4.2. Preparation of cis-RuCl ${ }_{2} L$ (1, $L=$ Me $_{4}$ I14]aneS $_{4}$; 2, $L=$ Me $_{6}$ [15]aneS ${ }_{4}$; $3, L=$ Me $_{8}[16]$ aneS $_{4}$ )

A mixture of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(2.87 \mathrm{~g}, 3.00 \mathrm{mmol})$ and $\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}(0.97 \mathrm{~g}, 3.00 \mathrm{mmol})$ in toluene ( 40 ml ) was heated at $80^{\circ} \mathrm{C}$ for 20 h . The pale yellow microcrystals which separated ( $1.46 \mathrm{~g}, 98 \%$ ) were filtered and washed with ether or hexane. The crystals were pure enough to use as a starting material, but may be recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / toluene; m.p. $277-280^{\circ} \mathrm{C}$ (dec). Anal. Found: C, $34.52 ; \mathrm{H}, 5.59 . \mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~S}_{4} \mathrm{Cl}_{2} \mathrm{Ru}$ calcd.: C, 33.87 ; H, $5.69 \%$. The compounds 2 and 3 were also obtained by a similar reaction of $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{3}$ with $\mathrm{Me}_{6}[15] \mathrm{aneS}_{4}$ and $\mathrm{Me}_{8}[16]$ ane $\mathrm{S}_{4}$ as yellow ( $98 \%$ ) and orange crystals ( $95 \%$ ), respectively. Compound 2 : m.p. 253-258 C (dec). Anal. Found: 38.11; H, 6.29. $\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{~S}_{4} \mathrm{Cl}_{2} \mathrm{Ru}$ calcd.: C, $37.91 ; \mathrm{H}, 6.36 \%$. Compound 3: m.p. $265-270^{\circ} \mathrm{C}$ (dec). Anal. Found: C, 41.60 ; H, $6.96 \% . \mathrm{C}_{20} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~S}_{4} \mathrm{Ru}$ calcd.: $\mathrm{C}, 41.74 ; \mathrm{H}, 6.96 \%$.

[^3]ml ) was stirred at room temperature for 10 h . The orange brown solution was concentrated and the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene to give 4 as yellow crystals ( $15 \mathrm{mg}, 16 \%$ ), m.p. $221-223^{\circ} \mathrm{C}$ (dec). Anal. Found: C, $36.49 ; \mathrm{H}, 6.06 . \mathrm{C}_{14} \mathrm{H}_{29} \mathrm{ClS}_{4} \mathrm{Ru}$ calcd.: C, $36.40 ; \mathrm{H}, 6.33 \%$. Concentration of the mother liquor and subsequent recrystallization of the solid residue from acetone afforded 7 as brown crystals ( 50 $\mathrm{mg}, 54 \%$ ), m.p. $257-259^{\circ} \mathrm{C}$ (dec). Anal. Found: C, 36.49; H, 6.13. $\mathrm{C}_{28} \mathrm{H}_{58} \mathrm{Cl}_{2} \mathrm{~S}_{8} \mathrm{Ru}_{2} \cdot 1 / 2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO} \cdot \mathrm{H}_{2} \mathrm{O}$ calcd.: $\mathrm{C}, 36.53 ; \mathrm{H}, 6.44 \%$. Addition of $\mathrm{NaBPh}_{4}$ to a MeOH solution of 7 and recrystallization of the precipitates from acetone gave the corresponding $\mathrm{BPh}_{4}$ salt quantitatively. Anal. Found: C, 53.06; H, 6.68. $\mathrm{C}_{52} \mathrm{H}_{62}$ $\mathrm{BClS}_{8} \mathrm{Ru}_{2} \cdot \mathrm{Me}_{2} \mathrm{CO}$ calcd.: $\mathrm{C}, 52.62 ; \mathrm{H}, 6.85 \%$.

Compound 4 can be prepared in high yield ( $81 \%$ ) by carrying. out the above reaction under similar conditions but in MeOH .
4.4. Preparation of trans-RuH(Cl)L (5, L=syn-Me $\sigma_{\sigma}$ [15]ane $S_{4} ; 6, L=$ syn-Me ${ }_{8}[16] a n e S_{4}$ )
cis- $\mathrm{RuCl}_{2}\left(\mathrm{Me}_{6}[15]\right.$ ane $\left.S_{4}\right)(200 \mathrm{mg}, 0.37 \mathrm{mmol})$ was treated with $\mathrm{NaBH}_{4}(14 \mathrm{mg}, 0.37 \mathrm{mmol})$ in EtOH ( 40 ml ) at room temperature for 3 h . After concentration of the yellow solution in vacuo, the residue was extracted with toluene and recrystallized by adding hexane to the concentrated solution to give 5 as yellow crystals in $50 \%$ yield, m.p. $195-200^{\circ} \mathrm{C}$ (dec). Anal. Found: C , $40.91 ; \mathrm{H}, 6.90 . \mathrm{C}_{17} \mathrm{H}_{35} \mathrm{ClS}_{4} \mathrm{Ru}$ calcd.: C , 40.50 ; H, $6.99 \%$.

A similar reaction of cis- $\mathrm{RuCl}_{2}\left(\mathrm{Me}_{8}[16] a n e \mathrm{~S}_{4}\right)$ with an equimolar amount of $\mathrm{NaBH}_{4}$ gave 6 as yellow
crystals in $74 \%$ yield, m.p. $250^{\circ} \mathrm{C}$ (dec). Anal. Found: C, 44.09; H, 7.39. $\mathrm{C}_{20} \mathrm{H}_{41} \mathrm{ClS}_{4} \mathrm{Ru}$ calcd.: C, 43.99; H, 7.57\%.

### 4.5. Preparation of $\left\{R u H\left(s y n-\mathrm{Me}_{4}[14] a n e S_{4}\right)\right\} \mathrm{BPh}_{4}(8)$

To a solution of trans- $\mathrm{RuH}(\mathrm{Cl})\left(\right.$ syn- $\mathrm{Me}_{4}[14]$ aneS $\left._{4}\right)$ ( $30 \mathrm{mg}, 0.065 \mathrm{mmol}$ ) in EtOH was added an excess of $\mathrm{NaBPh}_{4}$ at room temperature and the resulting precipitate was recrystallized from acetone to give 8 as paie yellow crystals ( $26 \mathrm{mg}, 54 \%$ ). Anal. Found: C, 61.26; H, 6.48. $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{BS}_{4} \mathrm{Ru}$ calcd.: $\mathrm{C}, 61.20 ; \mathrm{H}, 6.62 \%$.
4.6. Preparation of $\mathrm{RuH}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{Me}_{4}\right.$ [14]aneS ${ }_{4}$ ) (9)

To a suspension of $\mathrm{RuH}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{PhCH}_{3}(146 \mathrm{mg}$, 0.14 mmol ) in DME ( 15 ml ) was added $\mathrm{Me}_{4}[14]$ ane $_{4}$ at room temperature. After several minutes, the purple crystals of the starting material dissolved to give a reddish brown solution. Concentration of the filtered solution gave yellow crystals of 9 ( $127 \mathrm{mg}, 85 \%$ ), m.p. $105-107^{\circ} \mathrm{C}$ (dec). Anal. Found. C, $60.20 ; \mathrm{H}, 6.25 . \mathrm{C}_{50^{-}}$ $\mathrm{H}_{59} \mathrm{ClP}_{2} \mathrm{~S}_{4} \mathrm{Ru} \cdot \mathrm{MeOCH}_{2} \mathrm{CH}_{2} \mathrm{OMe}$ calcd.: $\mathrm{C}, 60.24 ; \mathrm{H}$, $6.96 \%$. An attempt to prepare the $\mathrm{Me}_{8}[16] a n e S_{4}$ analogue failed; even under prolonged heating $\left(60^{\circ} \mathrm{C}, 44 \mathrm{~h}\right)$ of $\mathrm{RuH}(\mathrm{Cl})\left(\mathrm{PPh}_{3}\right)_{3}$ with the crown thioether in DME, the starting materials were recovered unchanged.

### 4.7. Preparation of $\left.\left\{\mathrm{RuH}_{\left(\mathrm{PPh}_{3}\right)}\right)\left(\mathrm{Me}_{4} \mathrm{I} 14 \mathrm{~J} \mathrm{aneS}_{4}\right)\right\} B P h_{4}$

 (10)The compound 9 ( $53 \mathrm{mg}, 0.05 \mathrm{mmol}$ ) was dissolved in $\mathrm{MeOH}(10 \mathrm{ml})$ and an excess of $\mathrm{NaBPh}_{4}$ was added to precipitate 10 quantitatively. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ gave pale yellow crystals, m.p. 223-

TABLE 5. Crystallographic data for diffraction studies

| Compound | 4 | 5 | 7 |
| :---: | :---: | :---: | :---: |
| Formula | $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{ClS}_{4} \mathrm{Ru}$ | $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{ClS}_{4} \mathrm{Ru}$ | $\mathrm{C}_{28} \mathrm{H}_{58} \mathrm{Cl}_{2} \mathrm{~S}_{8} \mathrm{Ru}_{2} \cdot 1 / 2 \mathrm{Me}_{2} \mathrm{CO} \cdot \mathrm{H}_{2} \mathrm{O}$ |
| F.W. | 462.2 | 504.2 | 971.2 |
| Crystal system | Orthorohmbic | Orthorohmbic | Trigonal |
| $a$ ( ${ }_{\text {( }}$ ) | 14.683(13) | 14.976(3) | 18.615(6) |
| $b$ ( $\AA$ ) | 12.605(2) | 13.877(3) |  |
| $c(\AA)$ | 10.284(7) | 21.087(27) | 64.937(13) |
| $V\left(\AA^{3}\right)$ | 1903(2) | 4381(6) | 19487(11) |
| Z | 4 | 8 | 18 |
| $d_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$ | 1.61 | 1.52 | 1.49 |
| Space group | Pna ${ }_{1}$ | Pbca | $R \overline{3} c$ |
| Crystal size (mm) | $0.5 \times 0.5 \times 0.5$ | $0.4 \times 0.4 \times 0.3$ | $0.3 \times 0.3 \times 0.2$ |
| $\mu\left(\mathrm{cm}^{-1}\right)$ | 15.80 | 7.78 | 17.3 |
| Scan type | $2 \theta-\omega$ | $2 \theta-\omega$ | 20- $\omega$ |
| $2 \theta$ range ( ${ }^{\circ}$ ) | 3-60 | 3-55 | 5-55 |
| No. data collected | 3167 | 5064 | 5204 |
| No. of unique data | 2303 | 3011 | 1975 |
|  | $\left(\left\|F_{o}\right\|>6 \sigma\left(F_{\mathrm{o}}\right)\right.$ ) | $\left(\left\|F_{o}\right\|>5 \sigma\left(F_{\mathrm{o}}\right)\right)$ | $\left(\left\|F_{o}\right\|>6 \sigma\left(F_{\mathrm{o}}\right)\right.$ ) |
| No. of parameters | 186 | 213 | 225 |
| $\boldsymbol{R}\left(R_{w}\right)$ | 0.030(0.033) | 0.043(0.051) | 0.055(0.063) |
| GOF | 1.29 | 1.28 | 1.42 |

$225^{\circ} \mathrm{C}$ (dec). Anal. Found: C, 66.39; H, 6.39. $\mathrm{C}_{56} \mathrm{H}_{64}$ BPS $_{4}$-Ru calcd.: C, 66.72; H, 6.40\%.
4.8. $X$-Ray structural studies of trans-RuH(Cl)(syn-L) (4, $L=M e_{4}$ [14]aneS ${ }_{4} ; 5, L=M e_{6}[15]$ aneS $_{4}$ ) and $\left\{R u_{2} H\right.$ $\left.(\mu-\mathrm{H}) \mathrm{Cl}\left(\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)_{2}\right\} \mathrm{Cl} \cdot 1 / 2 \mathrm{Me}_{2} \mathrm{CO} \cdot \mathrm{H}_{2} \mathrm{O}$ (7)

### 4.8.1. Data collection

Air sensitive crystal of $\mathbf{4}, \mathbf{5}$ and $\mathbf{7}$ suitable for X-ray diffraction experiments were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / toluene, EtOH , and acetone, respectively. Intensities were collected on a Rigaku AFC-6 automatic four-circle diffractometer by using graphite-monochromated Mo$\mathrm{K} \alpha$ radiation ( $\mu=0.71068 \AA$ ). Unit cell parameters of 4,5 and 7 were obtained from least-squares refinements of $24\left(38 \leqslant 2 \theta \leqslant 40^{\circ}\right), 20\left(22 \leqslant 2 \theta \leqslant 26^{\circ}\right)$, and 20
reflections ( $26 \leqslant 2 \theta \leqslant 32^{\circ}$ ) measured at room temperature, respectively. The refined cell parameters and additional relevant crystal data are summarized in Table 5. The intensities of three reflections were monitored every 100 reflections; no significant decay ( $<2 \%$ ) was observed during the data collections for these complexes. The data were corrected for $L p$ effect, but not for absorption ( $\mu r=0.4,0.16$, and 0.3 for 4,5 and 7, respectively).

### 4.8.2. Structural solution for $\mathbf{4}$ and 5

All calculations were performed on an ACOS-930 computer using unics ii [30]. The positions of the Ru atoms were located from Patterson maps. The systematic absences for the reflections limited the choice of space groups to Pna2 ${ }_{1}$ or Pnam for 4 and Pbca for 5.

TABLE 6. Selected atomic coordinates $\left(\times 10^{4}\right)$ and isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$ for 4,5 and 7

| Atom | $x$ | $y$ | $z$ | $U_{\text {eq }}$ | Atom | $x$ | $y$ | $z$ | $U_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| trans-RuH(Cl)(syn-Me ${ }_{4}$ [14]aneS ${ }_{4}$ ) (4) |  |  |  |  |  |  |  |  |  |
| Ru | 6436.6(2) | 4769.8(3) | 0.6 (1) | 29.1(1) | C(9) | 8383(4) | 5461(5) | - 1295(7) | 49(3) |
| Cl | 695(1) | 4543(1) | 2390(1) | 45(1) | C(10) | 8110(4) | 4427(5) | - 1893(6) | 50(3) |
| S(1) | 5321(1) | 3530(1) | 267(1) | 35(1) | C(12) | 6990(4) | 2669(4) | - 1867(5) | 45(3) |
| S(4) | 5363(1) | 6036(1) | 527(1) | 40(1) | C(13) | 6199(4) | 1997(4) | - 1332(6) | 47(3) |
| S(8) | 7465(1) | 6111(1) | -415(1) | 36(1) | C(14) | 5322(3) | 2629(4) | -1119(5) | 39(3) |
| S(11) | 7509(1) | 3585(1) | -711(1) | 35(1) | C(Me1) | 6358(4) | 8230(4) | -1(1) | 64(3) |
| C(2) | 4314(3) | 4283(4) | - 197(6) | 29(2) | C(Me2) | 5841(4) | 8265(4) | -2356(7) | 58(3) |
| C(3) | 4273(3) | 5320(4) | 536(6) | 37(2) | $\mathrm{C}(\mathrm{Me} 3)$ | 6479(4) | 1411(4) | -6(1) | 64(3) |
| C(5) | 5244(3) | 6860(4) | -918(5) | 45(3) | C(Me4) | 5975(4) | 1188(5) | -1399(9) | 65(4) |
| C(6) | 6105(4) | 7545(4) | -1215(5) | $50(3)$ | H | 603(4) | 489(5) | -152(8) | 47(21) |
| C(7) | 6936(4) | 6911(4) | -1688(5) | 48(3) |  |  |  |  |  |
| trans-RuH(Cl)(syn-Me ${ }_{6}$ [15]aneS ${ }_{4}$ ) (5) |  |  |  |  |  |  |  |  |  |
| Ru | 3408.9(3) | 3504.8(3) | 2958.4(2) | 27.8(2) | C(10) | 5268(4) | 2062(4) | 2723(3) | 34(3) |
| Cl | 4636(1) | 4831(1) | 2815(1) | 41(1) | C(11) | 5402(4) | 2255(4) | 3016(30) | 35(3) |
| S(1) | 2802(1) | 3616(1) | 1962(1) | $40(1)$ | C(13) | 4929(4) | 2826(5) | 1862(3) | 40(3) |
| S(4) | 2345(1) | 4635(1) | 3232(1) | 34(1) | C(14) | 4332(4) | 3037(5) | 1292(3) | 61(4) |
| S(8) | 3812(1) | 3302(1) | 4002(1) | 37(1) | C(15) | 3689(4) | 3890(5) | 1409(3) | 56(3) |
| S(12) | 4373(1) | 2348 (1) | 2561(1) | 37(1) | C(Me1) | 3325(5) | 5879(5) | 4830(4) | 83(6) |
| C(2) | 2149(5) | 4737(5) | 1957(3) | 66(5) | C(Me2) | 2317(4) | 4556(6) | 4713(3) | 46(4) |
| C(3) | 2340(5) | 5355(5) | 2500(4) | 82(5) | C(Me3) | 6198(4) | 1805(5) | 3989(3) | 51(4) |
| C(5) | 2849(4) | 5516(4) | 3760(3) | 45(4) | C(Me4) | 4634(4) | 1222(5) | 3831(3) | 55(4) |
| C(6) | 3085(4) | 5102(5) | 4406(3) | 46(3) | C(Me5) | 3833(5) | 2128(5) | 1076(3) | 83(3) |
| C(7) | 3945(4) | 4489(4) | 4380(3) | 49(4) | C(Me6) | 4968(5) | 3362(6) | 760(3) | $86(6)$ |
| C(9) | 4988(4) | 2980(4) | 4078(3) | 35(3) | H | 265(4) | 279(5) | 311(3) | 40(20) |
| $\left\{\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H}) \mathrm{Cl}\left(\text { syn }-\mathrm{Me}_{4}[14] \text { aneS }{ }_{4}\right)_{2} \mathrm{lCl}(7)\right.$ |  |  |  |  |  |  |  |  |  |
| Ru1 | 0 | 4692(1) | 2500 | 40(1) | Ru2 | 0 | 2860(1) | 2500 | 34(1) |
| S1(1) | 1046(2) | 5202(2) | 2739.0(5) | 61(2) | S2(1) | -172(2) | 2684(2) | 2850.5(4) | 52(2) |
| S1(4) | 1004(2) | 5160(2) | 2250.0.05) | 48(2) | S2(4) | -1421(2) | 2103(2) | 2472.4(5) | 43(2) |
| C1(2) | 1865(9) | 6020(10) | 2588(3) | 60(10) | C2(2) | - 1203(8) | 1760(10) | 2866(2) | 64(9) |
| C1(3) | 1880(10) | 5970(10) | 2386(3) | 80(10) | C2(3) | -1710(10) | 1650(10) | 2723(2) | 70(10) |
| Cl(5) | 7668 ) | 5747(7) | 2060(2) | 100(10) | C2(5) | -1674(7) | 1194(7) | 2312(2) | $59(8)$ |
| C1(6) | -44(9) | 5250(8) | 1946(2) | 110(10) | C2(6) | -1380(8) | 1402(7) | 2090(2) | 65(8) |
| C1(7) | -82018) | 4984(8) | 2076(2) | $90(10)$ | C2(7) | -444(8) | 1776(7) | 2066(2) | 85(9) |
| C1(Me1) | -7(1) | 4515(9) | 1836(2) | 150(20) | $\mathrm{C} 2(\mathrm{Mel}$ ) | -1688(8) | 1943(8) | 1991(2) | 76(9) |
| $\mathrm{C} 1(\mathrm{Me} 2)$ | -5(1) | 5839(9) | 1779(2) | 150(10) | $\mathrm{C} 2(\mathrm{Me} 2)$ | -1765(9) | 563(9) | 1982(2) | 90(10) |
| $\mathrm{H}_{\mathbf{t}}$ | 0 | 1950(70) | 2500 | 30(43) | $\mathrm{H}_{\mathrm{b}}$ | 0 | 372(8) | 2500 | 53(51) |
| Cl | 0 | 6082(1) | 2500 | 78(3) |  |  |  |  |  |

Attempts to solve the structure in the centric space group Pnam for the former were not successful. All non-hydrogen atoms were found by successive difference Fourier syntheses and were refined by the blockdiagonal least-squares method with anisotropic temperature factors. The hydrogen atoms of the macrocycles were included at the calculated positions ( $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ ) with $B_{\text {iso }}=4.0 \AA^{2}$; their parameters were not refined. The hydrido ligands of both complexes were found in the difference Fourier maps at this stage. In the final least-squares refinements, the positional and temperature factors of the hydrido ligands were carefully refined isotropically. Tables of atomic coordinates and anisotropic thermal factors, bond distances and angles, and observed and calculated structure factors for 4 have been deposited at the Cambridge Crystallographic Data Center [12] while those of 5 are available as supplementary material.

### 4.8.3. Structural solution of 7

In the first stage, the analysis was carried out for the small yet false trichinic system ( $P 1$ ) to give only an approximate crystal structure possessing pseudo $C_{3}$ symmetry ( $Z=6$ ). The correct crystal system was found to be trigonal with a very long $c$-axis as shown in Table 5. Systematic absences $h k(i) l$ for $-h+k+l \neq 3 n$ and $h h(0) l$ for $l=2 n+1$ were consistent with both $R \overline{3} c$ and $R 3 c$ space groups. The structure could be solved and refined successfully in the former space group. The positions of two Ru atoms were determined from the Patterson map. Phases derived from the Ku positions were used to locate all S atoms and the Cl ligand. All other non-hydrogen atoms including the Cl counter anion were found by a series of difference Fourier and block diagonal least-squares refinements. The H atoms of $\mathrm{H}_{2} \mathrm{O}$ were detected and refined isotropically, while those of the macrocycle and $\mathrm{Me}_{2} \mathrm{CO}$ were included at the calculated positions ( $\mathrm{C}-\mathrm{H}=0.96 \AA$ ) with $B_{\text {iso }}=4.0$ $\AA^{2}$ and their positions were not refined. At this stage, the $\mathrm{H}_{\mathrm{t}}$ and $\mathrm{H}_{\mathrm{b}}$ atoms were found in difference Fourier maps using the low-angle reflections $(\sin \theta / \lambda<0.40$ $\AA^{-1}$ ) and refined isotropically by fixing the positional and thermal parameters of all other atoms [31]. It is to be noted that the difference Fourier synthesis employing the whole reflection data showed promise in locating the hydrido peaks, but they were merged by a number of background peaks. Finally the other atoms were refined by fixing the refined parameters of the hydrido ligands. The abnormal $\mathrm{C}-\mathrm{C}$ bond lengths of the $\mathrm{RuSCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ rings are caused by the large anisotropic thermal motions of the C atoms. The difference Fourier maps did not show any disorder about these $\mathbf{C}$ atoms. The final difference Fourier synthesis displayed no significant residual electron density; the
largest peak was $0.50 \mathrm{e}^{\AA^{-3}}$ at $(1 / 3,1 / 3,0.085)$ on a threefold screw axis. Atom scattering factors and anomalous dispersion terms were taken from common sources. Atomic coordinates and thermal parameters, full bond lengths and angles and $F_{o}-F_{c}$ tables are deposited as supplementary materials.

### 4.9. Molecular orbital calculations

All calculations were of the extended Hückel type with weighted $H_{i j}$ 's. The valence state ionization potentials and orbital exponents of $\mathrm{Ru} 4 \mathrm{~d}, 5 \mathrm{~s}$ and 5 p orbitals were taken from those given by Hoffmann et $a l$. [32]. The parameters for $\mathrm{H}, \mathrm{S}$ and Cl atoms are standard. Bond lengths and angles for the model compound are those found for 7 except $\mathrm{S}-\mathrm{H}$ distance of $1.33 \AA$.

## Acknowledgement

This work is partly supported partly by a Grant-inAid for Scientific Research (No. 02804050) from the Ministry of Education, Science and Culture, Japan and by Takasago Research Institute, Inc. We thank Professor Kazuyuki Tatsumi of Department of Chemistry, Faculty of Engineering Science, Osaka University for valuable suggestions on the theoretical calculations.

## References

1 K.S. Suslick and T.J. Reinert, J. Chem. Educ., 62 (1985) 974 and refs. therein.
2 D.H. Busch, L.L. Zimmer, J.J. Grzybowski, D.J. Olszauski, S.C. Jackels, R.C. Callahan and G.G. Christoph, Proc. Natl. Acad. Sci. USA, 8 (1981) 5951.
3 (a) W.-K. Lin, N.W. Alcock and D.H. Busch, J. Am. Chem. Soc., 113 (1991) 7603; (b) D.H. Busch, in A.F. Martell and D.T. Sawyer (eds.), Oxygen Complexes and Oxygen Activation by Transition Metals, Plenum, New York, 1988, p. 61.
4 (a) J.F. Endicott, J. Kumar, C.L. Schwarz, M.C. Perkovic and W.-K. Lin, J. Am. Chem. Soc., 111 (1989) 7411; (b) C.L. Schwarz and J.F. Endicott, Inorg. Chem., 28 (1989) 4011 and refs. therein.
5 T. Yoshida, T. Adachi, K. Kawazu and N. Sasaki, Angew. Chem., Int. Ed. Engl., 30 (1991) 982.
6 D.W. Hart, R. Bau and T.F. Koetzle, Organometallics, 4 (1985) 1590 and refs. therein.
7 J.P. Olsen, T.F. Koetzle, S.W. Kirtley, M. Andrew, D.L. Tipton and R. Bau, J. Am. Chem. Soc., 96 (1974) 6621.
8 W.A. Herrmann, H. Biersack, M.L. Ziegler, and P. Wülknitz, Angew. Chem., Int. Ed. Engl., 20 (1981) 388.
9 A. Albinatti, R. Naegeli, A. Tongni and L.M. Vananzi, Organometallics, 2 (1983) 926.
10 F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th edition, Wiley, New York, 1988.
11 R. Bau, R.G. Teller, S.W. Kirtley and T.F. Koetzle, Acc. Chem. Res., 12 (1979) 176 and refs. therein.
12 T. Yoshida, T. Adachi, T. Ueda, T. Tanaka and F. Goto, J. Chem. Soc. Chem. Commun., (1990) 342.
13 T. Yoshida, T. Adachi, T. Tanaka and F. Goto, J. Organomet. Chem., 428 (1992) C12.

14 T. Ueda, H. Yamanaka, T. Adachi and T. Yoshida, Chem. Lett., (1988) 525.

15 A.J. Blake and M. Schröder, Adv. Inorg. Chem., 35 (1990) 1; A.F. Hill, N.W. Alcock, J.C. Cannadine and G.R. Clark, J. Organomet. Chem., 426 (1992) C40; N.W. Alcock, J.C. Cannadine, G.R. Clark and A.F. Hill, J. Chem. Soc., Dalton Trans., (1993) 1131.
16 T.-F. Lai and C.-K. Poon, J. Chem. Soc., Dalton Trans., (1982) 1465.

17 T. Yoshida, T. Adachi, H. Akao and T. Tanaka, unpublished.
18 T.H. Tulip, T. Yamagata, T. Yoshida, R.D. Wilson, J.A. Ibers and S. Otsuka, Inorg. Chem., 18 (1979) 2239.
19 K. Osakada, K. Ohshiro and A. Yamamoto, Organometallics, 10 (1991) 404.

20 S.C. Rawle, T.J. Sewell and S.R. Cooper, Inorg. Chem., 26 (1987) 33769.

21 S.C. Rawle and S.R. Cooper, J. Chem. Soc., Chem. Commun., (1987) 308.

22 M.N. Bell, A.J. Blake, M. Schröder, H.-J. Küppers and K. Wieghardt, Angew. Chem., Int. Ed. Engl., 26 (1987) 250.

23 R.G. Ball and J. Trotter, Inorg. Chem., 20 (1981) 261.
24 J. Roziere, J.M. Williams, R.P. Jr. Stewart, J.L. Petersen and L.F. Dahl, J. Am. Chem. Soc., 99 (1977) 4497.
25 R. Bau, R.G. Teller, S.R. Kirtley and T.F. Koetle, Acc. Chem. Res., 12 (1979) 176.
26 E.R. Wolf and S.R. Cooper, American Chemical Society, Seattle, 1989, abstract INORG 173.
27 T. Yoshida, T. Adachi, T. Ueda, M. Watanabe, M. Kaminaka and T. Higuchi, Angew. Chem., Int. Ed. Engl., 26 (1987) 1171.

28 P.S. Hallmann, T.A. Stephenson and G. Wilkinson, Inorg. Synth., 12 (1970) 237.
29 R.A. Schunn and E.R. Wonchoba, Inorg. Synth., 13 (1972) 131.
30 T. Ashida, The Universal Crystallographic Computing SystemOsaka, The Computer Center, Osaka University, 1979.
31 S.L. Palca and J.A. Ibers, Acta Crystallogr., 18 (1965) 511; S.W. Kirtley, J.P. Olsen and R. Bau, J. Am. Chem. Soc., 95 (1973) 4532.

32 K. Tatsumi and R. Hoffmann, J. Am. Chem. Soc., 103 (1981) 328.


[^0]:    Correspondence to: Dr. T. Yoshida.

[^1]:    ${ }^{\text {a }}$ Measured in $\mathrm{CDCl}_{3}, J$ in Hz .

[^2]:    ${ }^{a}$ Nujol mull. ${ }^{\mathrm{b}} \mathrm{J}$ in $\mathrm{Hz} .{ }^{\mathrm{c}}$ In $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. ${ }^{\mathrm{d}}$ In benzene- $\mathrm{d}_{6}{ }^{\mathrm{c}}$ The ratio of two geometrical isomers exhibiting the hydrido signals at $\delta$ - 21.6 and
    -21.7 is 2:3. ${ }^{\mathrm{f}}$ In acetone- $\mathrm{d}_{6} .{ }^{\mathrm{g}}$ Signals due to dme appear at $\delta 3.12(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me})$ and $3.31\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right)$.

[^3]:    4.3. Preparation of trans-RuH $(\mathrm{Cl})\left(\right.$ syn-Me ${ }_{4}[14]$ ane $\left._{4}\right)$ (4) and $\left\{\mathrm{Ru}_{2} \mathrm{H}(\mu-\mathrm{H}) \mathrm{Cl}\left(\mathrm{syn}-\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)_{2}\right\} \mathrm{Cl}$ (7)

    A mixture of $c i s-\mathrm{RuCl}_{2}\left(\mathrm{Me}_{4}[14] \mathrm{aneS}_{4}\right)$ ( $100 \mathrm{mg}, 0.2$ mmol) and $\mathrm{NaBH}_{4}(70 \mathrm{mg}, 1.85 \mathrm{mmol})$ in $\mathrm{EtOH}(10$

